High-resolution multitransistor array recording of electrical field potentials in cultured brain slices.

نویسندگان

  • M Hutzler
  • A Lambacher
  • B Eversmann
  • M Jenkner
  • R Thewes
  • P Fromherz
چکیده

We report on the recording of electrical activity in cultured hippocampal slices by a multitransistor array (MTA) with 16,384 elements. Time-resolved imaging is achieved with a resolution of 7.8 microm on an area of 1 mm2 at 2 kHz. A read-out of fewer elements allows an enhanced time resolution. Individual transistor signals are caused by local evoked field potentials. They agree with micropipette measurements in amplitude and shape. The spatial continuity of the records provides time-resolved images of evoked field potentials and allows the detection of functional correlations over large distances. As examples, fast propagating waves of presynaptic action potentials are recorded as well as patterns of excitatory postsynaptic potentials across and along cornu ammonis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Innovative Methodology High-Resolution Multitransistor Array Recording of Electrical Field Potentials in Cultured Brain Slices

Hutzler, M., A. Lambacher, B. Eversmann, M. Jenkner, R. Thewes, and P. Fromherz. High-resolution multitransistor array recording of electrical field potentials in cultured brain slices. J Neurophysiol 96: 1638–1645, 2006. First published May 10, 2006; doi:10.1152/jn.00347.2006. We report on the recording of electrical activity in cultured hippocampal slices by a multitransistor array (MTA) with...

متن کامل

A novel organotypic long-term culture of the rat hippocampus on substrate-integrated multielectrode arrays.

Spatiotemporally coordinated activity of neural networks is crucial for brain functioning. To understand the basis of physiological information processing and pathological states, simultaneous multisite long-term recording is a prerequisite. In a multidisciplinary approach we developed a novel system of organotypically cultured rat hippocampal slices on a planar 60-microelectrode array (MEA). T...

متن کامل

Multi-electrode arrays technology for the non-invasive recording of neural signals: a review article

The recording of electrophysiological activities of brain neurons in the last half-century has been considered as one of the effective tools for the development of neuroscience. One of the techniques for recording the activity of nerve cells is the multi-electrode arrays (MEAs). Microelectrode arrays (MEAs) are usually employed to record electrical signals from electrogenic cells like neurons o...

متن کامل

Large-scale, high-resolution electrophysiological imaging of field potentials in brain slices with microelectronic multielectrode arrays

Multielectrode arrays (MEAs) are extensively used for electrophysiological studies on brain slices, but the spatial resolution and field of recording of conventional arrays are limited by the low number of electrodes available. Here, we present a large-scale array recording simultaneously from 4096 electrodes used to study propagating spontaneous and evoked network activity in acute murine cort...

متن کامل

Dense arrays of micro-needles for recording and electrical stimulation of neural activity in acute brain slices.

OBJECTIVE This paper describes the design, microfabrication, electrical characterization and biological evaluation of a high-density micro-needle array. The array records from and electrically stimulates individual neurons simultaneously in acute slices of brain tissue. APPROACH Acute slices, arguably the closest in-vitro model of the brain, have a damaged surface layer. Since electrophysiolo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 96 3  شماره 

صفحات  -

تاریخ انتشار 2006